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Promising new tools for the LETKF (1) 
 

1.  Running in Place (Kalnay and Yang, QJ 2010, Yang, Kalnay 
and Hunt, MWR, 2012) 
•  It extracts more information from observations by using them 
more than once. 
•   It uses the “no-cost smoother”, Kalnay et al., Tellus, 2007b. 
•  Useful during spin-up (e.g., hurricanes and tornados), and during 
nonlinear regimes. 
•  Typhoon Sinlaku (Yang et al., 2012) 
•  7-years of Ocean Reanalysis (Penny, 2011, Penny et al., 2012) 
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Promising new tools for the LETKF (2) 
 

2.  Effective assimilation of Precipitation (Guo-Yuan Lien, 
Eugenia Kalnay and Takemasa Miyoshi, 2013) 

•  Assimilation of precipitation has generally failed to improve 
forecasts beyond a few hours. 

•  A new approach deals with non-Gaussianity, and assimilation 
of both zero and non-zero precipitation.  

•  In OSSEs the model now “remembers” the assimilation, so that 
that medium range forecasts are improved. 

•  We are starting to work with real observations… harder… 
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Promising new tools for the LETKF(3) 
3.  Forecast Sensitivity to Observations and “proactive QC” 

 (with Y Ota, T Miyoshi, J Liu, and J Derber)  
•  A simpler, more accurate formulation for the Ensemble 

Forecast Sensitivity to Observations (EFSO, Kalnay et al., 
2012, Tellus). 

•  Ota et al., 2012 tested it with the NCEP EnSRF-GFS 
operational system using all operational observations. 

•  Allows to identify “bad observations” after 12 or 24hr, and then 
repeat the data assimilation without them: “proactive QC”. 

 
4. Ensemble Sensitivity: application to EnKF 

 (with Yang) 
•  We are testing the use of Singular Vectors based on 

Ensembles in data assimilation.  
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Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���

(a square root filter)	


•  Model independent 
(black box) 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  100% parallel 
•  No adjoint needed 
•  4D LETKF extension 
•  Computes the weights 
for the ensemble forecasts 
explicitly 

(Start with initial ensemble) 

LETKF Observation 
operator 

Model 

ensemble  analyses 

ensemble forecasts 

ensemble  
“observations” 

Observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

 

Localization based on observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

All observations (purple diamonds) 
within the local region are assimilated 

Localization based on observations 

The LETKF algorithm can be described in a single slide! 
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Local Ensemble Transform Kalman Filter (LETKF) 

Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, and 
compute the local analysis error covariance and perturbations in 
ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the new 

global analyses. Note that the the output of the LETKF are analysis 
weights         and perturbation analysis matrices of weights        . These 
weights multiply the ensemble forecasts. 

   
x n,k

b = M n x n−1, k
a( )

X b = x1
b − xb | ... | x K

b − xb⎡⎣ ⎤⎦;

y i
b = H (x i

b ); Yn
b = y1

b − yb | ... | y K
b − yb⎡⎣ ⎤⎦

Pa = K −1( )I +YbTR−1Yb⎡⎣ ⎤⎦
−1
;Wa = [(K −1) Pa ]1/2

X n
a = X n

bWa + xb

wa = PaYbTR−1(yo − yb )
Wa

Globally: 

  w
a Wa
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Quasi Outer Loop (QOL)
 “Running in place” (RIP) for faster spin-up
 Use of future data in reanalysis
 Ability to use longer windows and nonlinear perturbations

tn tn-1 
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No-cost LETKF smoother first 
tested on a QG model: it works… 

“Smoother” 
reanalysis  

LETKF Analysis 
xn
a = xn

f +Xn
fwn

aLETKF analysis  
at time n 

Smoother analysis  
at time n-1 xn−1

a = xn−1
f +Xn−1

f wn
a

Very simple smoother: apply the final weights at the 
beginning of the window. It allows assimilation of 
future data, and assimilating data more than once.  
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Nonlinearities: “Quasi Outer Loop” (QOL) 

Quasi Outer Loop: use the final weights to correct only the 
mean initial analysis, keeping the initial perturbations. 
Repeat the analysis once or twice. It re-centers the 
ensemble on a more accurate nonlinear solution. 

Lorenz -3 variable model RMS analysis error 
 

   4D-Var   LETKF  LETKF  LETKF 
              +QOL             +RIP 

Window=8 steps  0.31      0.30  0.27    0.27 
Window=25 steps  0.53      0.66  0.48    0.39  
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Nonlinearities, “QOL” and “Running in Place” 

Quasi Outer Loop: similar to 4D-Var: use the final weights 
to correct only the mean initial analysis, keeping the 
initial perturbations. Repeat the analysis once or twice. 
It centers the ensemble on a more accurate nonlinear 
solution. 

Lorenz -3 variable model RMS analysis error 
 

   4D-Var   LETKF  LETKF  LETKF 
               +QOL             +RIP 

Window=8 steps  0.31      0.30  0.27    0.27 
Window=25 steps  0.53      0.68  0.47    0.35  
 
“Running in Place” smoothes both the analysis and the 
analysis error covariance and iterates a few times… 
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Running in Place: Spin-up with a QG model 

Spin-up depends on the  initial perturbations, but RIP works well even with 
uniform random perturbations. RIP becomes even faster than 4D-Var (blue).  

 

RIP accelerates 
the EnKF spin-up 
(e.g., hurricanes, 
severe storms) 

LETKF with uniform 
random initial 
perturbations 

RIP 

4D-Var with 3D-Var 
Initial perturbations 
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Why RIP works: Results with a Linear model 

xn = M (xn−1) = xn−1 +α

σ n
2 =G(σ n−1

2 ) = Cσ n−1
2

•  RIP adapts to using an observation N-times by dividing the 
spread by N: RIP converges to the regular optimal KF solution. 

•  The spin-up is faster and the analysis update is “softer” (in 
small steps) rather than in large steps. 
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LETKF-RIP with real observations 
(Typhoon Sinlaku, 2008)  

11/23/2011@NTU-‐TIMS	  

SYNOP(+),SOUND(△),	  
DROPSONDE(○),	  
Typhoon	  center	  (X)	   RIP	  uses	  be=er	  the	  “limited	  observaHons”!	  

Flight	  data	  

Typhoon	  Sinlaku	  (2008)	  

3-‐day	  forecast	  

Obs	  
LETKF-‐RIP	  
LETKF	  

Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan) 



Observation Impact for the first set of dropsondes 

The	  effecHveness	  of	  the	  dropsonde	  data	  is	  greatly	  improved	  by	  RIP	  and	  the	  
negaHve	  impact	  shown	  in	  the	  control	  LETKF	  is	  much	  reduced.	  

Mean	  observa>on	  impact	  of	  
dropsondes	  	  

4-‐Day	  track	  predic>on	  
	  ini>alized	  at	  09/09	  06Z	  

LETKF	  
LETKF-‐RIP	  

2012/10/02@NTU	  

With RIP 

Without RIP 

error reduction 
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Steve Penny’s thesis 
defense 

April 15, 2011 

An application of LETKF-RIP to ocean data assimilation 

Data Assimilation of the Global Ocean  
using 4D-LETKF, SODA(OI) and MOM2 

Advisors: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin 

Penny (now at UMD/NCEP) implemented the LETKF 
with either IAU or RIP and compared it with SODA (OI) 
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LETKF-RIP B/A 

FREE-RUN 

LETKF-IAU B 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (ºC) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Temperature (oC),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis  
Temperature  
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LETKF-RIP B/A 

Free-Run 

SODA B 
SODA A 
LETKF-IAU A 

RMSD (psu) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Salinity (psu),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis 
Salinity 
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Why is LETKF-RIP so much better than SODA 
or LETKF-IAU for the ocean reanalysis? 

•  The ocean observations are too sparse for  a 
standard EnKF, or even OI/3D-Var with a short (5-
day) window. 

•  SODA and LETKF-IAU used a much longer window 
(30 days) in order to hammer the system with the 
available observations. 

•  LETKF-RIP is able to use a 5-day window but re-
uses the observations in order to extract more 
information. 
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Summary for LETKF-RIP (or QOL)  

•  Kalman Filter is optimal for a linear, perfect model. 
•  During spin-up, or when the ensemble perturbations grow 

nonlinearly, EnKF is not optimal, since it cannot extract 
enough information from the observations. 

•  The LETKF “no-cost” smoother (or, equivalently, the 4D-
EnSRF) allows LETKF-RIP to use the observations more than 
once, and thus extract more information. 

•  This shortens the spin-up and produces more accurate 
forecasts with the same observations. 

•  For linear models RIP converges to the same optimal KF 
solution but with spread reduced by ~ 

•  For long windows and nonlinear perturbations, RIP advances 
in smaller steps and approaches the true attractor more 
“softly”.  

N
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(2) Effective Assimilation of Precipitation 
(Guo-Yuan Lien, E. Kalnay and T Miyoshi) 

•  Assimilation of precipitation has been done by changing the moisture Q in 
order to make the model “rain as observed”. 

•  Successful during the assimilation: e.g. the North American Regional 
Reanalysis had perfect precipitation! 

•  However the model forgets about the changes soon after the assimilation 
stops!  

•  The model will remember potential vorticity (PV). 
•  EnKF should modify PV efficiently, since the analysis weights will be 

larger for an ensemble member that is raining more correctly, because it 
has a better PV. 

•  However, 5 years ago, we had tried assimilating precipitation observations 
in a LETKF-SPEEDY OSSE but the results were POOR! 

•  Problem: precipitation is very non-Gaussian. 
•  We tried a Gaussian transformation of precipitation and it worked!  
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G−1 (x ) = 2erf −1 (2x −1)

How do we transform precipitation y to a Gaussian ytransf? 

Start with pdf of 
y=rain at every grid 
point. 
 
 “No rain” is like a 
delta function that we 
cannot transform. 
 
We assign all “no 
rain” to the median 
of the no rain CDF. 
 
We found this works 
as well as more 
complicated 
procedures. 
 
It allows to assimilate 
both rain and no rain. 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in order 
to assimilate an obs, updating all variables (including vorticity), 
with Gaussian transform, and rather accurate observations 
(20% errors), the analyses and forecasts are much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage. 
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Raobs 

Q-only 

All variables 

SH 

NH 

TR 
One year of 

5-day 
forecasts 

The model remembers the impact of pp assimilation 
in the SH, NH and tropics! 
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Assimilated only rain 

Assimilated both rain and no rain 

If we assimilate only rain the results are much worse! 
We need to assimilate both rain and no rain! 
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50% errors, No Gaussian Transform 

50% errors, with Gaussian Transform 

20% errors, with GT 

The impact of the Gaussian Transform is important  
with large observation errors (50% rather than 20%). 
The impact of GT50% is almost as good as GT20%. 
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Vorticity errors and corrections 

There is no vorticity information in the pp observations, but 
the LETKF clearly knows about the vorticity errors 



How about real observations? 
We will use TRMM/TMPA satellite estimates  

(from G. Huffman) with the NCEP GFS 

TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 



Summary for assimilation of precipitation 

•  The model remembers potential vorticity (dynamics), does not 
remember moisture changes, or even temperature. 

•  For this reason, when using nudging, or variational assimilation 
of precipitation to change Q and T, the model “forgets” this 
information and returns to the original forecast. 

•  EnKF has a better chance to assimilate potential vorticity by 
giving higher weights to ensemble members with good precip. 

•  In addition, EnKF has the advantage of not requiring model 
linearization, a problem for variational systems. 

•  In OSSEs EnKF with a Gaussian transformation of precipitation 
assimilates rain info and remembers it during the forecast. 

•  Requiring at least several ensemble forecasts to have Rain>0 
allows the effective assimilation of both rain and no rain. 

30 



The NCEP 5-day skill dropout problem 



Ensemble Forecast Sensitivity to Observations 
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010) 

We now have a simpler, more accurate formulation  
(Kalnay, Ota, Miyoshi: Tellus, 2012) 

The only difference between         and            is the assimilation of observations at 00hr: 

 

 

  Observation impact on the reduction of forecast error:   

(Adapted from Langland 
and Baker, 2004) 

e t |0 = x t |0
f − x t

a

e t |0 e t |−6

Δe2 = (e t |0
T e t| 0 − e t |−6

T e t |−6 ) = (et | 0
T − e t |−6

T )(et | 0 + e t |−6 )

analysis   t 

e t |−6
e t |0

-6hr 00hr 

OBS. 

(x0
a − x0|−6

b ) = K(y − H (x0 |−6
b ))



Ensemble Forecast Sensitivity to Observations 
Δe2 = (e t |0

T e t| 0 − e t |−6
T e t |−6 ) = (et | 0

T − e t |−6
T )(et | 0 + e t |−6 )

= (xt |0
f − x t |−6

f )T (e t| 0 + et |−6 )

= M(x0
a − x0|−6

b )⎡⎣ ⎤⎦
T

(e t |0 + e t |−6 ), so that

Δe2 = MK(y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
(e t |0 + e t |−6 )

Langland and Baker (2004), Gelaro, solve this with the adjoint: 

Δe2 = (y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
K TMT (et | 0 + e t |−6 )

This requires the adjoint of the model       and of the data 
assimilation system      (Langland and Baker, 2004) KT

MT



Ensemble Forecast Sensitivity to Observations 
Langland and Baker (2004): 

Δe2 = MK(y − H (x0 |−6
b )⎡⎣ ⎤⎦

T
(e t |0 + et |−6 )

= (y − H (x0|−6
b )⎡⎣ ⎤⎦

T
KTMT (e t| 0 + e t |−6 )

With EnKF we can use the original equation without “adjointing”: 

Δe2 = MK(y − H (x0 |−6
b )⎡⎣ ⎤⎦

T
(e t |0 + et |−6 )

= (y − H (x0|−6
b )⎡⎣ ⎤⎦

T
R−1Y0

aX t |0
fT (et | 0 + e t |−6 ) / (K −1)

K = PaHTR−1 = 1 / (K −1)X aX aTHTR−1 so that 
MK =MX a(X aTH T )R−1 / (K −1) = Xt | 0

f Y aTR−1 / (K −1)

This uses the available nonlinear forecast ensemble products. 

Thus, 

Recall that 



Tested ability to detect a poor quality ob impact 
on the forecast in the Lorenz 40 variable model 

 The adjoint and the ensemble 
sensitivity give similar observation 
impact on the 24 hr forecast.  

 The ensemble sensitivity is 
nonlinear and is able to detect bad 
obs for longer forecasts 

 This was done ignoring EnKF 
localization 

Observation impact from LB(+) and from ensemble sensitivity (   ) 
1 day 10 days 

The localization center point for observation impact estimate is now 
moved with the horizontal wind: an approximation 



Impact of dropsondes on a Typhoon   
(Kunii et al. 2012)	

Estimated observation impact	

TY Sinlaku	

Degrading	

Improving	



Denying negative impact data improves forecast!	

Estimated observation impact	 Typhoon track forecast is 
actually improved!!	

Improved 
forecast	

36-h forecasts	

TY Sinlaku	

Original 
forecast	

Observed
track	



Ota et al. 2013, Tellus: Applied EFSO to NCEP GFS/
EnSRF using all operational observations.  

New: identified regional 24hr “forecast failures” 

• Divide the globe into 30x30o regions 

• Find all cases where the 24hr regional forecast error 
is at least 20% larger than the 36hr forecast error 
verifying at the same time, and 

• where the 24hr forecast has errors at least twice the 
time average. 

• Identify the top observation type that has a negative 
impact on the forecast. 

• Found 7 cases of 24hr forecast failures  



24-hr forecast error correction (Ota et al.) 
- identified 7 cases of large 30ox30o regional errors, 

- rerun the forecasts denying bad obs. 
- the forecast errors were substantially reduced 

- this could be applied to improve the 5-day skill dropouts 

MODIS 



“Proactive” QC: Bad observations can be identified 
by EFSO and withdrawn from the data assimilation 

!

After identifying MODIS polar winds producing bad 24 hr 
regional forecasts, the withdrawal of these winds reduced 
the forecast errors by 39%, as projected by EFSO. 



Standard application: Impacts of 
Observing Systems.  

EnKF allows using moist total energy  

Moist Total Energy (J/Kg) Dry Total Energy (J/Kg) 

The EnKF formulation is nonlinear and thus allows computing 
Moist Total Energy and estimate more accurately the impact of 
the channels on the moisture forecast. Adjoint formulation needs 
TLM. 
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Another potential application of Ensemble Sensitivity 
5. Application of ensemble forecast sensitivity to data 
assimilation (Yang, Kalnay, thanks to Enomoto) 
  
•  Very promising!! 



Ensemble Sensitivity: Application to Data 
Assimilation and the Spin-up Problem 
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Assume we are in a window of the LETKF with an 
ensemble of K members 

xi,t
b = M (xi,t−1

a )

δxi,t
b = xi,t

b − xt
b ≈M(δxi,t−1

a )

Since the window is short, 

Define the vectors of analysis and forecast perturbations: 

Xt−1
a = [δx1,t−1

a ,...,δxK ,t−1
a ]; Xt

b = [δx1,t
b ,...,δxK ,t

b ]
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We want to find the linear combination of analysis 
perturbations that will grow fastest:  

δxt−1
a = Xt−1

a p; δxt
b = Xt

bp

with optimal coefficients  p = [pt,1,...., pt,K ]

We can use the equation in Enomoto et al (2007) 
(see derivation in Yang and Kalnay, 2013):  

(Xt−1
aTCIXt−1

aT )−1(Xt
bTCFXt

bT )p = λp
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Is this fast growing perturbation related to the background errors? 

We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  

The initial optimal perturbation after 6hr grows into a final 
perturbation after 12 hrs: 
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  

The initial optimal perturbation after 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 

YES!!! 



Summary 
•  RIP can extract more information from observations 

and accelerate spin-up. Examples: Typhoon Sinlaku 
and Ocean 7 year reanalysis. 

•   EnKF can be used to assimilate and remember 
precipitation information, using a Gaussian Transform 
and other ideas. 

•  The Ensemble Forecast Sensitivity to Observations 
can be used to detect observations that result in bad 
regional 12 or 24hr forecasts. This allows repeating 
analysis without the bad observations: “proactive QC” 
and monitoring. 

•  Ensemble Sensitivity may be used to improve the 
LETKF spinup. 

•  EnKF is a newer, simpler, powerful technology.  



•  So far hybrids have been created combining an existing 
Var system with an ensemble to provide the flow 
dependence of the background error covariance. 

•  We would like to start with a well-developed EnKF 
(like the LETKF) and add a simple local 3D-Var that 
provides the full rank that the ensemble lacks. 

•  Steve Penny developed a simple, locally Gaussian 3D-
Var for this purpose, and tested it on the Lorenz-96, a 
40 variable model. 

•  He plots the analysis error as a function of the number 
of ensemble members (2 to 40) and the number of 
observations (1 to 40).  

Extra slides 
How about hybrids between Var and EnKF? 



An ensemble based hybrid with a simple local 
3D-Var (Steve Penny)  

applied to the Lorenz 96 model 
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The total model  dimension 
is K=40 
 
The LETKF is extremely 
accurate as long as  
k>7, number of obs>7. 
 

This is the corner where we 
are in ocean EnKF: too few 
obs, too few ensembles 

Standard LETKF 



An ensemble based hybrid with a simple local 
3D-Var (Steve Penny)  

applied to the Lorenz 96 model 
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Standard LETKF Add a simple 3D-Var to LETKF 

The hybrid LETKF-simple 3D-Var is more robust for few 
ensemble members and few observations, as in the ocean. 



S. Zhang et al.: GFDL Coupled  
Ocean-Atm EnKF Data Assimilation 



Basic idea for our coupled LETKF assimilation 

Atm. 

Ocean 

Atm. 

Ocean 

Atm. 

Ocean 

Obs. Oper. 

Obs. Oper. 

L 
E 
T 
K 
F 

Observations 

T,S 

us,vs,Ts,ps 
SST,us,vs,h 

u,v,T,q 

Atm. 

Ocean 

Atm. 

Ocean 

Atm. 

Ocean 

observation 
localization 

Coupled Model 

Ensemble of Coupled Forecasts 

Ensemble of Coupled Analyses 

Thanks to  
Miyoshi, Penny 

yb = H (xb )

y



Summary: ideas/questions for future 
coupled ocean-atmosphere EnKF 

•  Toy model: coupled assimilation and short windows are more 
accurate for LETKF even if ocean has longer time scales. 

•  Running in Place (RIP) extracts more information from the 
observations and allows the use of shorter windows.  

•  A new hybrid LETKF+simple 3D-Var would make the system 
more robust with fewer ensemble members and observations. 

•  For the coupled (India Monsoon Mission) CFS system, we will 
test the use of 6hr (short) windows for the ocean as well as the 
atmosphere assimilation. 

•  Assimilate SST and SSH observations directly.  
•  Localization of observations near the surface should allow for 

atm.-ocean interaction through the background error covariance 


