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Bayes' rule relates prior pdf to posterior pdf. For high model
dimensions, generally need Monte Carlo methods for integration.
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Ensembles of particles represent prior pdf and posterior pdf.
Compute expectations by summing over samples.
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Sampling from the conditional pdf
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Samples need to be distributed correctly. MCMC?
Rejection/acceptance? Scale poorly in high model/data
dimensions.
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Update the ensemble of samples
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Update the ensemble of samples

prior posterior

Each sample from prior is updated, not resampled from posterior.
How to update?
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How to update samples?

“The Ensemble Kalman Filter (EnKF) [is] a continuous
implementation of the Bayesian update rule” (Li and Caers, 2011).

“These methods use ... 'samples’ that are drawn independently
from the given initial distribution and assigned equal weights.
... When observations become available, Bayes' rule is applied
either to individual samples ..." (Park and Xu, 2009)

Note: Bayes rule explains how to update probabilities, but not how
to update samples.

(Particle filters do update the probability of each sample using
Bayes rule.)
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Two transformations from prior to posterior pdf

-15

Y =py+ Ly[LyzxLy]_1/2Ly(X — ix) Yy =py + LyL;l(X — Iix)

Two equally valid transformations from prior to posterior for
linear-gaussian problem. Bayes rule is not sufficient to specify the
transformation.
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Why it matters

1. If prior is Gaussian and posterior is Gaussian, then any linear
transformation of variables that obtains the correct posterior
mean and covariance is OK. (Any version of EnKF or EnSRF.)

2. What transformation to use when the observation operator is
nonlinear?

2.1 Randomized maximum likelihood (Kitanidis, 1995; Oliver
et al., 1996)

2.2 Optimal map (El Moselhy and Marzouk, 2012)

2.3 Implicit filters (Chorin et al., 2010; Morzfeld et al., 2012)

2.4 Continuous data assimilation or multiple data assimilation
(Reich, 2011; Emerick and Reynolds, 2013)

2.5 Ensemble-based iterative filters/smoothers
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Monge's transport problem

Solve for the optimal transformation s*(-) that minimizes

s* = argmin / x —s(x)||* p(x)dx  such that gs(x) = g(x)
s

Reminder:
> x ~ p(x)
> s(x) =y ~ qs(y), if x ~ p(x)
» q(y) is the target pdf of transformed variables

9/38



Explicitly (with Gaussian prior)

Let X be a multivariate normal random variable with probability
density p,

L) = rexp (500~ 0TG- ).

and let Y be a random vector defined by s(X) =Y. The
probability density of Y is

gs(y) = p (s7(y)) det S} (y)

— cpexp (557 H0) — )G ) - ) ) det )

where
SHy)=vsT.
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The posterior pdf, for a variable Y with prior distribution p(y) and
observation relation d° = h(y) + eq for eg ~ N(0, Cy) is

1 .
q(y) = cqexp <—2(y ) Gy —n)
1 o - o
~500) )T C ) - ).
If we wish to sample from the posterior, we must seek
transformations such that gs(y) = q(y).
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Example!

> Prior pdf:

p(x) = N(pix; Xx)
> Target pdf:

q(x) = N(py, Xy)

y =s(x) = py + Ly[LyzxLy]_1/2Ly(X — hix)

where L, = ¥¥? and L, = ¥,/%.

Minimizes the expected value of the squared distance || X — Y/

'Olkin and Pukelsheim (1982); Knott and Smith (1984); Riischendorf (1990)
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Speculation — why would the minimum distance solution
be desirable?

Obtaining a transformation with optimal transport properties may
only be important insofar as it simplifies the sampling problem
except that the ‘natural’ optimal transport solution might be more
robust to deviations from ideality.

Examples include those in which samples from the prior are

complex geological models, in which case making as small of a
change as possible might be beneficial.
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Transformations between spaces of unequal dimensions

Consider the mapping from X € RN to Y = s(X) € RM where
M < N such that

/ Ix — As(x)|I2. p(x) dx

is minimized and the pdfs for x and y = s(x) are

X ~ N(/J'X7ZX)
y ~ N(uy,Zy).
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Transformations between spaces of unequal dimensions
(continued)

The transformation
y = argmin (x = Ay)T 55 (x - Ay)
-1
- (ATz;lA) ATy 1x.
is a solution for the special case
Ty-1,) "
r, = (A7)

and
by = (ATZ;lA)_l ATS
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Transformations between spaces of unequal dimensions

Note that if

then
~1
_ Ty—1 Tsy—1|X
y= (AT JA) ATE] [d]
~1
— x+ GHT (HCXHT v Cd> (d — Hx)

is the optimal transport transformation of [x d] to y for a
particular cost function.

(Note that this is the perturbed observation form of the EnKF, or
RML for linear inverse problem.)
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Nonlinear Transformations

Consider now the problem of determining an approximation of the
optimal transformation s* that satisfies

s* = argmin / m N [his(():i’)))}

subject to y = s(x, d) is distributed as g(y) for

2
p(x, d) dx dd
2 d

plx. d) = cpexp <—§(x TG x - )

)¢ - d°)>7

The prior is Gaussian but the data relationship is nonlinear.
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Approximate solution

Consider the transformation defined by the solution of

v ([3]-[0)) 15 & (5[]

If his differentiable, then the variables x*, d*, and y* are related as

x* = y* + GH] C M h(y*) — d¥]
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Approximate solution
For small y — y*, the pdf of transformed variables

log(gs(y)) = % v-m" Gy —pw
3 ()~ d)T G5 (h(y) — o)
+ u(b, d*,y*) + log |J|

is approximately equal to the target pdf.
u(0, d*, y*) comprises terms that do not depend on y.
The Jacobian determinant of the transformation is

'8(x,d)’_ I —CGHIct

~ |H. /

~ oy, )
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Examples
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Example 1: unimodal but skewed
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Example 1: unimodal but skewed
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Figure 1: Samples from the Gaussian prior distribution (mean 1.5) were
mapped using the minimization transformation. The blue solid curve
shows the true pdf. The dashed curve shows the product of the true pdf
and the Jacobian determinant of the transformation.
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Example 1: unimodal but skewed
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(a) Absolute error in estimate of mean. (b) Absolute error in estimate of stan-
dard deviation.

Figure 2: Comparison of empirical moments from 10,000 independent
samples using minimization-based sampling with true moments. The
magenta dots are 2 standard deviations in the error of samples of 100
realizations from the true distribution.
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Example 2: single variable, bimodal

h(x)=d

posterior

(a) Likelihood (b) prior and posterior

Figure 3: The observation tells that x ~ +1. Prior says that x ~ 0.8.

Will sample from prior, transform to posterior.
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Example 2: single variable, bimodal
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Figure 4: Transformed samples from approximate posterior vs samples

from prior.

y* = argmin
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Example 2: single variable, bimodal

(a) y vs x

Figure 5: Transformed samples from approximate posterior vs samples
from prior. Red curve shows the (correct) optimal map defined for
minimizing expected distance between x and y.
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Example 2: single variable, bimodal
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Figure 6: Distributions of transformed samples for two values of noise in
the observation. Samples from the prior distribution (gray curve) were
mapped using the minimization transformation. The blue solid curve
shows the true pdf. Clearly under-sampled in region between modes.
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Example 2: single variable, bimodal
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Figure 7: Same as previous slide, but the dashed curve shows the product
of the true pdf and the Jacobian determinant of the transformation.
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Example 3: two variables, bimodal

1. The locations of the modes in 20 experiments were randomly
sampled.

2. Bimodality is established through nonlinearity of one
observation of x? + x3.

3. Second observation is made of a linear combination of the two
variables

4. Approximately 4000 samples for each experiment
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Example 3: two
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(c) Example C: modes relatively
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(b) Example B: modes relatively
distant, good sampling.

(d) Example B: mapping of indi-
vidual samples from prior to pos-
terior.
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Example 3: Quantitative comparison
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For each example, we compute the local mean for each of the

modes of the distribution and the total probability for each mode.
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Example 3: Summary results
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(a) Comparison of sampled estimate  (b) Comparison of sampled estimate
of local mean for modes with true lo- of weight on one of the modes with
cal mean. true weight.

Figure 9: Approximately 4000 optimization-based samples are used to
compute the approximate weights and means for both modes of the
sampled distributions. Labeled points refer to experiments shown on a
previous slide.
32/38



Example 4: 4 modes, high dimension

The prior probability density is Gaussian with independence of
variables and unit range:

x ~ Aexp[—0.5x " x]
The likelihood is the sum of delta functions of random weights:

Limld] = bid(x — o)
i=1

so that the posteriori pdf that we wish to sample is

p[m = a;|d] x b; exp[—0.5 o] a;]
The a; were normally distributed with mean 0 but small variance.
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Example 4: random test pdf
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Computations in dimensions as high as 2000.
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Example 3: Summary results

>

2

= 10 )

0

© [ ]

Q

g_ 0.8} g

= °

—

S 06t °

P

()

) °

504t

o) °

(2]

0

L“ 0.2+ Y

T °

<) .

= o L .0
5 10 50 100 500 1000

Dimension of model space

1000 random samples of «; and ;. 10,000 samples used to
compute error for each set of a; and ;.
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Key points

1. Bayes' rule does not specify how to update individual samples.
Need some other criterion (such as ‘minimum expected
distance’).

2. For some types of problems, can simplify the optimal
transport problem (for probability density) by careful choice of
a cost function. Then use unconstrained minimization.

3. Samples from RML should probably be weighted according to
the Jacobian determinant of the transformation.
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Remaining questions

1. Defining a cost function was key to getting a good
approximation of optimal transport solution easily — how to
generalize for nongaussian prior?

2. How to efficiently compute the Jacobian of transformation for
weighting of updated samples?

3. Relationship of EnRML to RML?
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