Can a training image be a substitute
for a random field model?
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Introduction

Modern stochastic data assimilation algorithms may require generating
ensembles of facies fields. This is typically the case in reservoir optimization
where each facies field is used as input for a fluid flow exercise.

In a geostatistical context, facies fields are nothing but conditional
simulations. Different approaches can be considered to produce them:

— By resorting to a spatial stochastic model such as the plurigaussian
model, the Boolean model... This requires the choice of a model, the
statistical inference of its parameters, the design of a conditional simulation
algorithm...

— By resorting to a training image to produce multipoint simulations (MPS):
no statistical inference, wide generality, conceptual simplicity...

The second approach looks miraculous. Isn’'t there a price to pay for it?
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Compatibility between MPS'’s

and stochastic simulations



Principle of MPS

This is a sequential algorithm. Each step is as follows:

(i) a new target point is selected at random in the simulation field. It
defines a template along with the already processed points;

(ii) the pizels where the template matches the training image are
vdentified;

(ii1) one pizel among those is selected at random;

(iv) its value is assigned to the target point.
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The problem addressed

Assumption:

Suppose that the training image I is a realization, or part of a realization,
of some stationary, ergodic random field (SERF) Z on Z2.

Z is ergodic means that its spatial distribution can be retrieved from any of its realizations:

P{ﬂz 1nZ(azz) —EZ} = llm _ZH I(z;+s)=¢;

S— sesS 1=1

Question:

Does the empirical spatial distribution yielded by MPS's fit that of Z7?



Case of an infinite training image

Remark:

The algorithm cannot be directly applied because the template 1" matches
I at infinitely many points (set S7). The target point is then assigned the
value 0 or 1 with respective probabilities

1 1
po= lim — > lygy—0 p1= lim — Y Iy
s #S seESNST S—1* #S seSNSt

Results:
— Each MPS is a patch of the TI;

— The empirical spatial distribution fits that of Z:
|f (Xk,k > 1) is a sequence of MPS's on domain D, if x{,...x,, € D and if
€1,y ..., €n, € {0, 1}, then

1 oo
= lim - Z H Ixp@p=e; = P{mizl’”z(%) — ei}

k
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— Conditional MPS can be performed as well.



Case of a finite training image

Uncommon situation:
The algorithm runs till a MPS has been completed:
— Then the MPS a patch of the training image;

— Different MPS's display little variability (the training image has less
variability than an entire realization, possible overlaps between MPS's).

Common situation:

The algorithm stops at one step because the training image does not match
the template at any location:
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How to prevent the algorithm from stopping?

Reduce the size of the template

— By discarding points of a template, spurious conditional independence
relationships are introduced (Holden, 2006);

— Because of the sequential nature of the algorithm, these relationships
propagate, which may lead to severe artefacts to the final outcome (Arpat,
2005).

Increase the size of the training image
— MPS algorithms works for infinitely large images

— Accordingly, it should also work provided that the training image is large
enough...



Statistical considerations
on template matching



Statistical matching of a template

Notation:
— Z is a binary, stationary, ergodic random field (SERF) on Z?;

— T is a template.

Matching:
Let Ny () = 1if the template located at z matches Z, and 0 otherwise. N
is also a SERF. lts mean, variance and correlation function are respectively

denoted by pr, 04 = ur(1 — pr) and pr.

Matching number:

More generally, the number of times T'" matches Z in a finite domain V is
Np(V) = Z:cEV Nr(x). We have (7, is the translation by vector 07L)
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An asymptotic result

Heuristic approach:

Var{Nrp(V)} = o7 Z pr(h)#(V NmV)
heZ?
If the range of pp is small compared to the size of V/, then one heuristically
has #(V N1, V) ~ #V whenever pr % 0, which implies

Var{Nr(V)} = 03 > pr(h)#V
heZ?
Definition:
The integral ar = ), . 42 pr(h) of the correlation function of Z7 is called
the integral range of Z7. This is a dimensionless quantity that satisfies
0<ar < oo.

Property:

If 0 < ap < oo, and if #V > ap, then Np(V') is approximately Gaussianly

distributed with mean #V 7 and variance o7ar #V
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Application to the choice of V/

Put Np(V) = #Vur + opv#VaryY, where Y is a standard Gaussian
variable. Accordingly, we have

n—#V,LLT}
PIN7(V)>nt>1—a <+«<— PRY > >1—«
e =) R

Denoting by y1_, the quantile of order 1 — « of Y, the latter condition will
be satisfied as soon as

ek A < ¥
— Q0

oT\V #VCLT B

which yields
\/(1 — pT)aTyi o + \/(1 — pr)aryi_, +4n

V>
V#V > N

The right handside member is a decreasing function of 7 and an increasing
function of ar.
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Example: the discrete Boolean model

Ingredients:
— Independent Poisson variables (IV(u),u € Z*) (mean value 6);
— Independent copies (Au,n, w€EZ*n< N(u)) of a random object A.

Definition:

Z(x) =maxlycr, A, A, = Un< N (u)Aun
uEZ2 ’

Boolean model of squares of side 11. & = 0.0057 yields 50% zero proportion.
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Probability of matching
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Integral range
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Required area for 50 matchings in 95% cases
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A simple combinatorial remark

Assumptions:
— The training image is a square of n? pixels:

— The population of templates considered have the same support of £ pixels.

Counting:

— The total number of templates of the population is 2F.

— The training image contains at most n?

population (independent of k!);

different templates of the

Conclusion:

— The proportion of templates present in the training image is at most
n? /2"

— To give an order of magnitude, n = 10,000 and k£ = 100 (square 10 x 10)

yields an upper bound of 8 x 10723 for the proportion, that is close to the
reciprocal of the Avogadro number...

18



