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Introduction

Modern stochastic data assimilation algorithms may require generating
ensembles of facies fields. This is typically the case in reservoir optimization
where each facies field is used as input for a fluid flow exercise.

In a geostatistical context, facies fields are nothing but conditional
simulations. Different approaches can be considered to produce them:

– By resorting to a spatial stochastic model such as the plurigaussian
model, the Boolean model... This requires the choice of a model, the
statistical inference of its parameters, the design of a conditional simulation
algorithm...

– By resorting to a training image to produce multipoint simulations (MPS):
no statistical inference, wide generality, conceptual simplicity...

The second approach looks miraculous. Isn’t there a price to pay for it?
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Compatibility between MPS’s

and stochastic simulations
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Principle of MPS

This is a sequential algorithm. Each step is as follows:

(i) a new target point is selected at random in the simulation field. It
defines a template along with the already processed points;

(ii) the pixels where the template matches the training image are
identified;

(iii) one pixel among those is selected at random;

(iv) its value is assigned to the target point.

(i) (ii) (iii) (iv)
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The problem addressed

Assumption:

Suppose that the training image I is a realization, or part of a realization,
of some stationary, ergodic random field (SERF) Z on Z

2.

Z is ergodic means that its spatial distribution can be retrieved from any of its realizations:

P
˘

∩i=1,nZ(xi) = ǫi

¯

= lim
S−→Z2

1

#S

X

s∈S

n
Y

i=1

1I(xi+s)=ǫi

Question:

Does the empirical spatial distribution yielded by MPS’s fit that of Z?
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Case of an infinite training image

Remark:

The algorithm cannot be directly applied because the template T matches
I at infinitely many points (set ST ). The target point is then assigned the
value 0 or 1 with respective probabilities

p0 = lim
S−→Z2

1

#S

∑

s∈S∩ST

1I(s)=0 p1 = lim
S−→Z2

1

#S

∑

s∈S∩ST

1I(s)=1

Results:

– Each MPS is a patch of the TI;

– The empirical spatial distribution fits that of Z:
If

`

Xk, k ≥ 1
´

is a sequence of MPS’s on domain D, if x1, ...xn ∈ D and if

ǫ1, ..., ǫn ∈ {0, 1}, then

= lim
k−→∞

1

k

k
X

ℓ=1

n
Y

i=1

1Xℓ(xi)=ǫi
= P

˘

∩i=1,nZ(xi) = ǫi

¯

– Conditional MPS can be performed as well.
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Case of a finite training image

Uncommon situation:

The algorithm runs till a MPS has been completed:

– Then the MPS a patch of the training image;

– Different MPS’s display little variability (the training image has less
variability than an entire realization, possible overlaps between MPS’s).

Common situation:

The algorithm stops at one step because the training image does not match
the template at any location:
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How to prevent the algorithm from stopping?

Reduce the size of the template

– By discarding points of a template, spurious conditional independence
relationships are introduced (Holden, 2006);

– Because of the sequential nature of the algorithm, these relationships
propagate, which may lead to severe artefacts to the final outcome (Arpat,
2005).

Increase the size of the training image

– MPS algorithms works for infinitely large images

– Accordingly, it should also work provided that the training image is large
enough...
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Statistical considerations

on template matching
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Statistical matching of a template

Notation:

– Z is a binary, stationary, ergodic random field (SERF) on Z
2;

– T is a template.

Matching:

Let NT (x) = 1 if the template located at x matches Z, and 0 otherwise. NT

is also a SERF. Its mean, variance and correlation function are respectively
denoted by µT , σ2

T = µT (1 − µT ) and ρT .

Matching number:

More generally, the number of times T matches Z in a finite domain V is
NT (V ) =

∑

x∈V NT (x). We have (τh is the translation by vector ~oh)

E{NT (V )} = µT #V

V ar{NT (V )} = σ2
T

∑

h∈Z2

ρT (h) #(V ∩ τhV )
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An asymptotic result

Heuristic approach:

V ar{NT (V )} = σ2
T

∑

h∈Z2

ρT (h) #(V ∩ τhV )

If the range of ρT is small compared to the size of V , then one heuristically
has #(V ∩ τhV ) ≈ #V whenever ρT 6≈ 0, which implies

V ar{NT (V )} ≈ σ2
T

∑

h∈Z2

ρT (h) #V

Definition:

The integral aT =
∑

h∈Z2 ρT (h) of the correlation function of ZT is called
the integral range of ZT . This is a dimensionless quantity that satisfies
0 ≤ aT ≤ ∞.

Property:

If 0 < aT < ∞, and if #V ≫ aT , then NT (V ) is approximately Gaussianly
distributed with mean #V µT and variance σ2

TaT #V
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Application to the choice of V

Put NT (V ) ≈ #V µT + σT

√
#V aT Y , where Y is a standard Gaussian

variable. Accordingly, we have

P{NT (V ) ≥ n} ≥ 1 − α ⇐⇒ P

{

Y ≥ n − #V µT

σT

√
#V aT

}

≥ 1 − α

Denoting by y1−α the quantile of order 1−α of Y , the latter condition will
be satisfied as soon as

n − #V µT

σT

√
#V aT

≤ y1−α,

which yields

√

#V ≥

√

(1 − µT )aTy2
1−α +

√

(1 − µT )aTy2
1−α + 4n

2
√

µT

The right handside member is a decreasing function of µT and an increasing
function of aT .
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Example: the discrete Boolean model

Ingredients:

– Independent Poisson variables (N(u), u ∈ Z
2) (mean value θ);

– Independent copies
(

Au,n, u ∈ Z
2, n ≤ N(u)

)

of a random object A.

Definition:

Z(x) = max
u∈Z2

1x∈τuAu Au = ∪n≤N(u)Au,n

Boolean model of squares of side 11. θ = 0.0057 yields 50% zero proportion.
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Probability of matching
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Integral range
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Required area for 50 matchings in 95% cases
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A simple combinatorial remark

Assumptions:

– The training image is a square of n2 pixels;

– The population of templates considered have the same support of k pixels.

Counting:

– The total number of templates of the population is 2k.

– The training image contains at most n2 different templates of the
population (independent of k!);

Conclusion:

– The proportion of templates present in the training image is at most
n2/2k.

– To give an order of magnitude, n = 10, 000 and k = 100 (square 10× 10)
yields an upper bound of 8 × 10−23 for the proportion, that is close to the
reciprocal of the Avogadro number...
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