Can a training image be a substitute for a random field model?

X. EMERY¹, C. LANTUÉJOUL²

¹University of Chile, Santiago, Chile ²MinesParisTech, Fontainebleau, France

Introduction

Modern stochastic data assimilation algorithms may require generating ensembles of facies fields. This is typically the case in reservoir optimization where each facies field is used as input for a fluid flow exercise.

In a geostatistical context, facies fields are nothing but conditional simulations. Different approaches can be considered to produce them:

- By resorting to a spatial stochastic model such as the plurigaussian model, the Boolean model... This requires the choice of a model, the statistical inference of its parameters, the design of a conditional simulation algorithm...

By resorting to a training image to produce multipoint simulations (MPS):
no statistical inference, wide generality, conceptual simplicity...

The second approach looks miraculous. Isn't there a price to pay for it?

Outline

Compatibility between MPS's and stochastic simulations

- Principle of MPS
- Case of an infinite training image
- Case of a finite training image

Statistical considerations on template matching

- Statistical matching of a template
- Application to the estimation of the size of a training image
- Example
- A simple combinatorial remark

Compatibility between MPS's and stochastic simulations

Principle of MPS

This is a sequential algorithm. Each step is as follows:

(i) a new target point is selected at random in the simulation field. It defines a template along with the already processed points;

(*ii*) the pixels where the template matches the training image are identified;

(iii) one pixel among those is selected at random;

(iv) its value is assigned to the target point.

The problem addressed

Assumption:

Suppose that the training image I is a realization, or part of a realization, of some stationary, ergodic random field (SERF) Z on \mathbb{Z}^2 .

Z is ergodic means that its spatial distribution can be retrieved from any of its realizations:

$$P\left\{\bigcap_{i=1,n} Z(x_i) = \epsilon_i\right\} = \lim_{S \longrightarrow \mathbb{Z}^2} \frac{1}{\#S} \sum_{s \in S} \prod_{i=1}^n \mathbb{1}_{I(x_i+s) = \epsilon_i}$$

Question:

Does the empirical spatial distribution yielded by MPS's fit that of Z?

Case of an infinite training image

Remark:

The algorithm cannot be directly applied because the template T matches I at infinitely many points (set S_T). The target point is then assigned the value 0 or 1 with respective probabilities

$$p_0 = \lim_{S \longrightarrow \mathbb{Z}^2} \frac{1}{\#S} \sum_{s \in S \cap S_T} 1_{I(s)=0} \qquad p_1 = \lim_{S \longrightarrow \mathbb{Z}^2} \frac{1}{\#S} \sum_{s \in S \cap S_T} 1_{I(s)=1}$$

Results:

- Each MPS is a patch of the TI;

- The empirical spatial distribution fits that of Z:

If $(X_k, k \ge 1)$ is a sequence of MPS's on domain D, if $x_1, ..., x_n \in D$ and if $\epsilon_1, ..., \epsilon_n \in \{0, 1\}$, then

$$=\lim_{k \to \infty} \frac{1}{k} \sum_{\ell=1}^{k} \prod_{i=1}^{n} \mathbb{1}_{X_{\ell}(x_i)=\epsilon_i} = P\left\{\bigcap_{i=1,n} Z(x_i) = \epsilon_i\right\}$$

- Conditional MPS can be performed as well.

Case of a finite training image

Uncommon situation:

The algorithm runs till a MPS has been completed:

- Then the MPS a patch of the training image;
- Different MPS's display little variability (the training image has less variability than an entire realization, possible overlaps between MPS's).

Common situation:

The algorithm stops at one step because the training image does not match the template at any location:

How to prevent the algorithm from stopping?

Reduce the size of the template

- By discarding points of a template, spurious conditional independence relationships are introduced (Holden, 2006);

- Because of the sequential nature of the algorithm, these relationships propagate, which may lead to severe artefacts to the final outcome (Arpat, 2005).

Increase the size of the training image

- MPS algorithms works for infinitely large images

 Accordingly, it should also work provided that the training image is large enough... Statistical considerations on template matching

Statistical matching of a template

Notation:

- Z is a binary, stationary, ergodic random field (SERF) on \mathbb{Z}^2 ;
- -T is a template.

Matching:

Let $N_T(x) = 1$ if the template located at x matches Z, and 0 otherwise. N_T is also a SERF. Its mean, variance and correlation function are respectively denoted by μ_T , $\sigma_T^2 = \mu_T(1 - \mu_T)$ and ρ_T .

Matching number:

More generally, the number of times T matches Z in a finite domain V is $N_T(V) = \sum_{x \in V} N_T(x)$. We have $(\tau_h \text{ is the translation by vector } \vec{oh})$

$$E\{N_T(V)\} = \mu_T \# V$$
$$Var\{N_T(V)\} = \sigma_T^2 \sum_{h \in \mathbb{Z}^2} \rho_T(h) \# (V \cap \tau_h V)$$

An asymptotic result

Heuristic approach:

$$Var\{N_T(V)\} = \sigma_T^2 \sum_{h \in \mathbb{Z}^2} \rho_T(h) \# (V \cap \tau_h V)$$

If the range of ρ_T is small compared to the size of V, then one heuristically has $\#(V \cap \tau_h V) \approx \#V$ whenever $\rho_T \not\approx 0$, which implies

$$Var\{N_T(V)\} \approx \sigma_T^2 \sum_{h \in \mathbb{Z}^2} \rho_T(h) \# V$$

Definition:

The integral $a_T = \sum_{h \in Z^2} \rho_T(h)$ of the correlation function of Z_T is called the integral range of Z_T . This is a dimensionless quantity that satisfies $0 \le a_T \le \infty$.

Property:

If $0 < a_T < \infty$, and if $\#V \gg a_T$, then $N_T(V)$ is approximately Gaussianly distributed with mean $\#V\mu_T$ and variance $\sigma_T^2 a_T \#V$

Application to the choice of V

Put $N_T(V) \approx \#V\mu_T + \sigma_T\sqrt{\#Va_T}Y$, where Y is a standard Gaussian variable. Accordingly, we have

$$P\{N_T(V) \ge n\} \ge 1 - \alpha \quad \Longleftrightarrow \quad P\left\{Y \ge \frac{n - \#V\mu_T}{\sigma_T\sqrt{\#Va_T}}\right\} \ge 1 - \alpha$$

Denoting by $y_{1-\alpha}$ the quantile of order $1-\alpha$ of Y, the latter condition will be satisfied as soon as

$$\frac{n - \# V \mu_T}{\sigma_T \sqrt{\# V a_T}} \le y_{1-\alpha},$$

which yields

$$\sqrt{\#V} \ge \frac{\sqrt{(1-\mu_T)a_T y_{1-\alpha}^2} + \sqrt{(1-\mu_T)a_T y_{1-\alpha}^2 + 4n}}{2\sqrt{\mu_T}}$$

The right handside member is a decreasing function of μ_T and an increasing function of a_T .

Example: the discrete Boolean model

Ingredients:

- Independent Poisson variables $(N(u), u \in \mathbb{Z}^2)$ (mean value θ);
- Independent copies $(A_{u,n}, u \in \mathbb{Z}^2, n \leq N(u))$ of a random object A.

Definition:

$$Z(x) = \max_{u \in \mathbb{Z}^2} 1_{x \in \tau_u A_u} \qquad A_u = \bigcup_{n \le N(u) A_{u,n}}$$

Boolean model of squares of side 11. $\theta = 0.0057$ yields 50% zero proportion.

Probability of matching

Integral range

$$T_1 = \begin{bmatrix} 0 & 0 & & \\ 0 & 0 & T_2 = \begin{bmatrix} 1 & 0 & & \\ 0 & 0 & T_3 = \begin{bmatrix} 1 & 1 & & \\ 0 & 0 & T_4 = \begin{bmatrix} 0 & 1 & & \\ 1 & 0 & T_5 = \begin{bmatrix} 1 & 1 & & \\ 0 & 1 & T_6 = \begin{bmatrix} 1 & 1 & & \\ 1 & 1 & \\ 1 & 1 & 1 \end{bmatrix}$$

Required area for 50 matchings in 95% cases

$$T_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad T_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad T_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad T_5 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad T_6 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

A simple combinatorial remark

Assumptions:

- The training image is a square of n^2 pixels;
- The population of templates considered have the same support of k pixels.

Counting:

- The total number of templates of the population is 2^k .
- The training image contains at most n^2 different templates of the population (independent of k!);

Conclusion:

- The proportion of templates present in the training image is at most $n^2/2^k$.
- To give an order of magnitude, n = 10,000 and k = 100 (square 10×10) yields an upper bound of 8×10^{-23} for the proportion, that is close to the reciprocal of the Avogadro number...